Warm Up

- 1. What is the rule regarding capitalization of element symbols? Ist capital 2nd 3rd buck case
- 2. What are the element symbols for:

0:00:00

Tin - **S**~

Hydrogen - H

Silver — 🙏

Xenon - Xe

Palladium- Pa

Copper - Cu

A. Using your periodic table, determine the name or symbol for the following elements.

These are the most common elements used.

111000 1110 1110 111001	common elements		C:-
	P		Cu
nickel		lead	
magnesium	Mg		Ве
	В		Cr
chlorine		aluminum	
	Br		Hg
hydrogen			Zn
silver		carbon	
	Ne		Si
argon		helium	
sodium		tin	
manganese.	Mn		F
nitrogen		iodine	
	Li	iron	
cobalt			Au
	·s	oxygen	
potassium	K		Ca
barium			

	Ar]	Ba	Si	$\mathbf{P}\mathbf{b}$	Zn	As	Ne	Rn
1.	We brough	t ever	ything bu	ıt the kitcl	nen			
2.	When your	pet h	as died y	ou dig a h	ole in the	backyard	and	<u>-</u>
3.	Are the bab	y bird	ls still in	the nest?	No, they _			
4.	Doctors and	iputate	ed the bo	ttom half	of his leg 1	but they le	eft his	
5.	A prisoner	who a	icts in a s	illy mann	er is called	la		
6.	The crossin	ıg gua	rd took t	he child b	y the hand	and		them across the street
7.	The makers	s of Ra	aid insec	t repellent	came up	with the a	dvertisin	g slogan "Don't go out
	without you	ar						
8.	News repo	rter N	ic asked	the fire cl	nief what v	vas the ca	use of the	e fire. The fire chief said
	"It was				"			

What is an "atom"?

- The smallest particle of an element.
- Cannot be broken apart in chemical reactions.

Inside the Atom

3 key points.

- TG Most of the atom is empty space.
- 'G The nucleus is tiny compared to the rest of the atom ("grain of sand in football field").
- ,G Almost all of the mass is in the nucleus.

The atom is made of three smaller particles called the **subatomic particles**.

So how small is an atom really?

Summary table

Subatomic Particle	Charge	Relative Mass	Location
proton	+	l	nucleus (center)
neutron	0	1	nucleus
electron		(i)	orbit the nucleus

February 23, 2024

The <u>number of protons</u> are especially important since they determine <u>which</u> <u>element</u> the atom will be.

```
# of
Protons = Atomic Number

pt

# of

Electrons = Atomic Number

e - # of

Neutrons = Mass Number (round) - Atomic Number

no
```


Beryllium

Atomic # 4 Atomic Mass 9.01

N° = 9-4 = 5

Neon

Protons = 33

Electrons = 33

Neutrons = 75 - 33 - 42

Element	atomic number	mass number	standard atomic notation	# of protons	# of electrons	# of neutrons
Titanium	22_	47.87 48	22	22	22	48-22 26.
Zinc	3 0	65	65 Zn	30	<i>30</i>	6s-30 35

03 -Atoms and subatomic particles p.3 part.noteb	ook

Complete Subatomic Particles worksheet for next day.

answers - atomic models.pdf science journal.notebook