Motion Graph \# 8

1. What is the object's velocity at the 20 s point?
$-10 \mathrm{~m} / \mathrm{s}$
2. What is the acceleration at the 5 s point?
3. What is the acceleration at the 15 s point?
slope

\qquad
$2 m k^{2}$
4. What is the acceleration at he 110 s point?
$-1^{\mathrm{m}} / \mathrm{s}^{2}$
5. During what time intervals is the object travelling East?
$\theta-15,55-120 s$

Motion Graph \# 8

$$
\begin{aligned}
& 1.25 \mathrm{~s} \quad 20 \frac{\mathrm{n}}{\mathrm{~s}} \\
& 25 \mathrm{~m} \\
& \frac{26-27 \mathrm{~s}}{25-30,} 1_{\text {mark }} \frac{1}{2} \text { mark }
\end{aligned}
$$

11. When did the object first return to the starting point? $\quad 26 \cdot 258$
12. What was the object's average speed in the first 40 s ? $\quad d / t=\frac{525 \mathrm{~m}}{40 \mathrm{~s}}=13 \mathrm{~m} / \mathrm{s}$
13. What was the average velocity in the first 40 s ? $d=+25.3 / t=\frac{-275 \mathrm{~m}}{40 \mathrm{~s}}=-6.9 \mathrm{~m} / \mathrm{s}$
14. What is the object doing at the 90 s point?

Questions for quest?

$$
=\text { Area }_{\Delta}+\text { Area }_{\square}
$$

$$
=\frac{b h_{0}}{2}+b_{b} h_{0}
$$

From yesterday
$\vec{a} t=\vec{V}_{f}-\vec{V}_{i}$
$\vec{d}=$ Area

$$
=\frac{\left(v_{S}-v_{i}\right) t}{2}+\vec{v}_{i} t
$$

$$
=\frac{1}{2} \vec{a} t t+\vec{v}_{i} t
$$

$$
\vec{d}=\vec{V}_{i} t+\frac{1}{2} \vec{a} t^{2}
$$

Or another way still. . .

$$
\begin{aligned}
\vec{d} & =A_{\square}+A_{\Delta} \\
& =\vec{v}_{i} t+\frac{\left(\vec{v}_{f}-\vec{u}_{i}\right) t}{2} \\
& =\vec{v}_{i} t+\frac{1}{2} \vec{v}_{f} t-\frac{1}{2} \vec{v}_{i} t \\
& =\frac{1}{2} \vec{v}_{i} t+\frac{1}{2} \vec{v}_{f} t
\end{aligned}
$$

$$
\vec{d}=\vec{V}_{\text {ave }} t
$$

$$
\vec{V}_{\text {ave }}=\frac{\vec{V}_{i}+\vec{V}_{f}}{2}
$$

$$
\begin{aligned}
& \quad=\frac{1}{2}\left(\vec{V}_{i}+\vec{V}_{f}\right) t \\
& \text { when } \vec{d}=\left(\frac{\vec{V}_{i}+\vec{V}_{f}}{2}\right) t \underbrace{}_{\text {is constant }} \\
&
\end{aligned}
$$

Kinematics Equations:

$$
\begin{aligned}
& \vec{d}=\vec{v}_{a v e} t \\
& \rightarrow \vec{v}_{f}=\vec{v}_{i}+\vec{a} t \Rightarrow \text { missing } \vec{d} \\
& \vec{d}=\vec{v}_{i} t+\frac{1}{2} \vec{a} t^{2} \Rightarrow \text { missing } \vec{v}_{f} \\
& \vec{d}=\vec{v}_{f} t-\frac{1}{2} \vec{a} t^{2} \Rightarrow \text { missing } \vec{v}_{i} \\
& \vec{v}_{a v e}=\frac{\vec{v}_{i}+\vec{v}_{f}}{2} \quad \text { OR } \vec{d}=\frac{\vec{v}_{i}+\vec{v}_{f}}{2} t \Rightarrow \text { missing } \vec{a} \text { for cons }
\end{aligned}
$$

No equation without time.

Homework: Quest tomorrow on d-t and v-t graphs.
page 1: d-t graph 10 questions page 2: v-t graph 10 questions
d-t graphs.pdf
phys 11 v vst graphs.pdf

