Accelerated Motion - Physics 112 Workshee

1. A car starts from rest and accelerates east at $2.0 \mathrm{~m} / \mathrm{s}^{2}$ for 5.0 s . What is its final velocity? $(+10 \mathrm{~m} / \mathrm{s})$
2. A truck starts from rest and reaches a final velocity of $20 \mathrm{~m} / \mathrm{s}$ North in 4.0 seconds. What is its acceleration?
$\left(+5.0 \mathrm{~m} / \mathrm{s}^{2}\right)$
3. A snowmobile starting from rest accelerates at $3.0 \mathrm{~m} / \mathrm{s}^{2}$ until it reaches a velocity of $30 \mathrm{~m} / \mathrm{s}$ East. How long did it take to do this?
4. A car moving with a velocity of $15 \mathrm{~m} / \mathrm{s}$ West accelerates to a velocity of $60 \mathrm{~m} / \mathrm{s}$ West in 5.0 s . What was its acceleration?
5. An object moving with a velocity of $50 \mathrm{~m} / \mathrm{s}$ North accelerates to a velocity of $10 \mathrm{~m} / \mathrm{s}$ North in 4.0 s . What is its acceleration?
6. A car has an acceleration of $4.0 \mathrm{~m} / \mathrm{s}^{2}$ West. If its original velocity was $30 \mathrm{~m} / \mathrm{s}$ East, how long does it take for the car to stop?
7. A plane starts from rest and accelerates East for 6.0 s at a rate of $4.0 \mathrm{~m} / \mathrm{s}^{2}$. How far does it go in that time?
(72 m)
8. An object starting from rest accelerates for 8.0 s and goes a distance of 120 m . What was its acceleration?
$\left(+3.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
9. An object starting from rest accelerates at $5.0 \mathrm{~m} / \mathrm{s}^{2}$ and goes a distance of 90 m . How long did it take to do this?
10. A car travelling at $10 \mathrm{~m} / \mathrm{s}$ East accelerates at $3.0 \mathrm{~m} / \mathrm{s}^{2}$ East for 5.0 s a. How far does it go? a. How far does it go?
b. What is its final velocity?
11. A car with a speed of $25 \mathrm{~m} / \mathrm{s}$ East brakes to a stop in 5.0 seconds What is its acceleration?
b. What distance does it go with its brakes on?
12. A car with a velocity of $35 \mathrm{~m} / \mathrm{s}$ North accelerates to a velocity of $15 \mathrm{~m} / \mathrm{s}$ North in 4.0 s . and then continues at this new velocity for another 8.0 s . What is its resultant displacement? $\left(+2.2 \times 10^{2} \mathrm{~m}\right)$
13. A car with a speed of $36 \mathrm{~km} / \mathrm{h}$ North accelerates to a speed of $108 \mathrm{~km} / \mathrm{h}$ North while going a distance of only 200 m . North
a. What is its acceleration in $\mathrm{m} / \mathrm{s}^{2}$?
b. How long does it take?
14. A car starting from rest accelerates at $3.0 \mathrm{~m} / \mathrm{s}^{2}$ to a velocity of $72 \mathrm{~km} / \mathrm{h}$ South. What is its resultant displacement?
15. A car starting from rest accelerates to a velocity of $30 \mathrm{~m} / \mathrm{s}$ West and goes a distance of 150 m . while doing this. What is its acceleration?
16. A moving car comes to a stop in a distance of only 125 m and has an acceleration of $4.0 \mathrm{~m} / \mathrm{s}^{2}$ West. a. What was its original velocity in km / h ?
b. How long did it take to stop?
17. A puck starts across the ice with a velocity of $30 \mathrm{~m} / \mathrm{s}$. It is slowed down by friction at the rate of 1.50 $\mathrm{m} / \mathrm{s}^{2}$. Calculate
a. the time required for it to stop.
b. the distance travelled before stopping
18. A car initially travelling at a uniform velocity, accelerates at the rate of $1.0 \mathrm{~m} / \mathrm{s}^{2}$ for 12 s . if the car goes 190 m during this time, what was its initial velocity?
19. A puck is shot across the ice with a speed of $10 \mathrm{~m} / \mathrm{s}$. If it stops after 2.0 s , find: a. its acceleration.
b. the distance it travelled across the ice.
20. A car moving at $2.0 \mathrm{~m} / \mathrm{s}$ North is accelerated at the rate of $4.0 \mathrm{~m} / \mathrm{s}^{2}$ North. a. What is its velocity after 6.0 seconds? b. What is its displacement after 6.0 seconds?
c. What is its displacement during the sixth second?
21. A bullet is accelerated from rest in a gun barrel which is 1.00 metre long. If its muzzle velocity, (the speed with which it leaves the gun), is $600 \mathrm{~m} / \mathrm{s}$, what is its acceleration?
22. An aeroplane taking off from a runway has a run of 500 m . If it starts from rest, moves with a constant acceleration and makes the run in 20.0 s , what was its take-off velocity in km / h ?
23. The reaction time of the average automobile driver is 0.70 seconds. If an automobile can decelerate at $5.0 \mathrm{~m} / \mathrm{s}^{2}$ and is going at $50 \mathrm{~km} / \mathrm{h}$, calculate the distance travelled while coming to a complete stop after a red light is observed
24. A subway train starts from rest at a station and accelerates $2.00 \mathrm{~m} / \mathrm{s}^{2}$ for 10.0 seconds. It then runs at a constant velocity for 5.00 minutes before decelerating to a stop at $4.00 \mathrm{~m} / \mathrm{s}^{2}$ at the next station. How far is it between the two stations?
25. A train starts from rest and accelerates to a speed of $30.0 \mathrm{~m} / \mathrm{s}$ in only 15.0 s . It continues at this speed until it has gone a distance of 6000 m from its starting point. It slows down at this point at the rate of $2.00 \mathrm{~m} / \mathrm{s}^{2}$ until it stops.
a. How long is the train moving?
b. How far did the train go?
c. How fast was it going 12.0 s after it started?
26. Betty and Bob decide to race their bicycles over a 400 metre track. Bob can accelerate at $1.00 \mathrm{~m} / \mathrm{s}^{2}$ but can only do this for 6.00 seconds before he has reached his top speed. Betty, however, takes 10.0 seconds to reach her top speed and her acceleration is only $0.80 \mathrm{~m} / \mathrm{s}^{2}$.
a. Find the top speed of each.
c. How far behind is the loser when the race is over?
