
Light: Geometric Optics

Regular and Diffuse Reflection

Sections 23-1 to 23-2.

How We See

We see because light reaches our eyes. There are two ways, therefore, in which
we see: (1) light from a luminous object reaches our eyes directly (such as from a
light bulb); or (2) the light is reflected off an object and reaches our eyes.

In the absence of light we have darkness. Darkness appears... well, black. Black is
the “colour”we see when no light is reflected to our eyes. White, on the other hand is
the colour we see when all (or many) colours of light are reflected to our eyes. We see
colours based upon the colour of light reflected to our eyes.

There are two types of reflection. The type of reflection we normally see is
diffuse reflection. Light is reflected off “bumpy” surfaces in all directions. This is
also known as scattering. The second type of reflection, which we see off a mirror,
for example, is called regular reflection, so called because it is predictable. In both
cases, the light obeys the law of reflection, but in one case the surface is “bumpy” and
in the other, the surface is “smooth”. Diffuse reflection, while most common, is too
unpredictable. We prefer, rather, to focus on regular reflection.

There is considerable evidence that indicates that light travels in straight lines (or
almost straight lines) in a variety of circumstances (shadows for instance). We have
depth perception, for example, because we are able to triangulate a location with two
eyes (try this... with only one eye open you will have difficulty grabbing onto small
objects, or objects with which you are not familiar). This is based on the assumption
that light travels in straight lines. Surveying engineers do precisely the same thing on
a larger scale to locate objects, measure distances, etc. Light travelling in straight lines
has led us to the ray model of light, that is light travels in straight paths called rays.
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Regular Reflection and Plane Mirrors

Figure 1.1: Virtual Image

Since an ordinary object scatters light in all directions, we can consider one,
two or more rays of light coming from the object. Consider an object, represented by
the black dot, scattering light in front of a mirror (see Figure 1.1). If we consider only
two rays scattered by the object, when they hit the mirror, they will obey the law of
reflection. Consider, then, an eye looking at the reflected light. It appears to the eye as
if the light has actually come from behind the mirror (as indicated by the dotted lines).
In fact the eye is tricked into believing the object is behind the mirror. What the eye is
actually seeing is an image of the object. This type of image is called a virtual image
because there is nothing really there.

The image appears at the intersection of the two lines of sight. If we call the
distance from the object to the mirror the object distance, do, and the distance from
the image (represented by the grey circle) to the mirror the image distance, di, it can
be shown for a plane (or flat mirror) that do = di.

Question for thought: How long must a
mirror be for a person of height h to see
himself fully in the mirror?

Spherical Mirrors

Sections 23-3

Spherical Mirrors

Spherical mirrors come, as their title indicates, from a sphere. If we were to take a
shiny ball and slice part of it off, we would have the potential for two types of mirrors:
the shiny outside part of the ball and the shiny inside part of the ball. The mirror shiny
on the outside of the sphere is called a convex mirror, whereas the one shiny on the
inside is called a concave mirror.

Concave Mirrors

Figure 1.2: Concave mirror with parallel
incoming rays reflected through the focal
point

Consider an imaginary line connecting the center of the mirror’s surface to the cen-
ter of the sphere, called the center of curvature, C (i.e., a radius). This line extended
in both directions is called the principal axis (see Figure 1.2). If we consider rays
of light travelling toward the mirror parallel to the principal axis, they will reflect to
focus at a point.2in0 , obeying the law of reflection. This point is called the principal0 Note: This is true only as long as the width

of the mirror is small compared to the radius
of curvature, r.

focus, or the focal point, F. The distance from the mirror to the focal point is called
the focal length, f .

From Figure 1.2, we can see that CFB is an isosceles triangle, so CF = FB. We
know CB = CA since both are radii. Since width of the mirror is small compared to
CA, we realize that FB is almost equal to FA, so CF ≈ FA (≈ means “approximately
equal to"), which is the focal length, f . So 2 f = r, or

f =
r
2

.
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Figure 1.3: The first ray (1) enters parallel
to the principle axis and is reflected through
the F. The second ray (2) enters through
F and reflects parallel to the principle axis.
The third ray (3) passes through C. Since
this is a radius, it is perpendicular to the
mirror, so θi = θr = 0

We now consider an object some arbitrary distance, do, in front of the mirror. We
recall that the object reflects light in all directions, and we have a variety of rays to
choose from. Obviously to diagram many would be virtually impossible, so we will
choose a representative few. In fact, there are 3 rays we can select easily without
having to pull out a protractor to measure angles, as shown in Figure 1.3. The image is
formed where the rays of light meet. Any two are sufficient to locate the image.

Note that the image formed here is different than the one formed by the plane
mirror. In the case the rays of light actually meet. This is called a real image and has
the ability to be projected onto a screen. Note also that we can locate the image using
any two of these three rays. There are six different cases for concave mirrors, related
to different positions of the image: d0 > r, d0 = r, r > d0 > f , d0 = f and d0 < f . We
will examine these in class.

The Mirror Equation

Figure 1.4: Using similar triangles to derive
the mirror equation.

Geometrically, we can derive an equation linking the object distance, d0, the
image distance, di, and the focal length, f . This is called the mirror equation. In
Figure 1.4, we can see that O′AO ∼ (“is similar to") I′AI. Therefore, we have the
relationship

I′I
O′O

=
IA
OA

or defining the object height and image height to be ho and hi respectively,

hi

ho
=

di

do
.

We also can see that O′OF ∼ (approximately)BAF. This gives us the relationship

BA
O′O

=
AF
OF

or
hi

ho
=

f
do − f

.

By combining these two equations we get

di

do
=

f
do − f

.

By multiplying these out and dividing all terms by dodi f , we get

1
f
=

1
do

+
1
di

. (1.1)

Magnification

The magnification of a mirror is defined simply by the ratio of the image height as
compared to the object height, i.e.,

m =
hi

ho
= −

di

do
, (1.2)

where the negative sign is to take into account the conventions in Table 1.1.

Table 1.1: Conventions for Mirrors

Quantity + −

do, di in front of mirror behind mirror
f in front of mirror behind mirror

ho, hi erect inverted
m erect inverted
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Convex Mirrors

Convex mirrors follow all the same “rules” as concave mirrors, except the center
of curvature (and therefore the focal point) is on the back side of the mirror. Obvi-
ously rays of light do not reflect through the focal point, but they reflect as though
they have come from the focal point, as shown below. Unlike concave mirrors, there is
only one case for convex mirrors. The image will always be virtual, erect and smaller.

Lenses

Section 23-7 to 23-9.

When looking at lenses, we are considering only spherical lenses. These lenses
have surfaces which are, by definition spherical in nature. Like spherical mirrors,
they fall into two categories: convex and concave. While there are different types of
convex and concave lenses (double, plano, and concavo or convexo) we will consider
primarily double lenses (recognizing that the others have similar features).

Lenses behave much as mirrors do, except they work on the principal of refraction
rather than reflection. The mathematics are the same (the mirror equation is also the
lens equation), with slightly different conventions, as shown in Table 1.2.

Table 1.2: Conventions for Lenses

Quantity + −

do, di real virtual
f convex concave

ho, hi erect inverted
m erect inverted

As can be seen by the conventions, a concave mirror behaves in a similar fashion
to convex lenses, and vice versa. Therefore, much as there are six cases for concave
mirrors, there are six cases for convex lenses. Likewise, there is only one case for
concave lenses.

Ray Tracing

Figure 1.5: Ray tracings of convex and
concave lenses

(a) Convex lens

(b) Concave lens

Figures I.5(a) and I.5(b) depict ray tracings of convex and concave lenses respec-
tively. In each case, there are three rays that we know how they behave. Any two
is sufficient to locate an image. For convex lenses, a ray travelling in parallel to the
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principal axis will refract through the far focal point (1); a ray through the near focal
point will refract parallel to the principal axis (2); and a ray through the optical centre
passes straight through the lens (3). The rays for concave lenses are similar: (1) a ray
coming in parallel to the principal axis refracts from the near focal point; (2) a ray
travelling toward the far focal point refracts parallel to the principal axis; and (3) a ray
will travel straight through the optical centre.

Combination Lenses

Section 23-10.

Multiple Lenses

To deal with multiple lenses, we deal with one lens at a time. Consider two
convex lenses some distance apart, with an object in front of one lens (the objective
lens). The first lens forms an image (either real or virtual). The second lens then acts
upon the rays of light that pass through the first lens. This is the equivalent of treating
the image of the first lens as the object of the second lens.

We treat the ray tracings in the same way. We construct the diagram for the first
lens. We then effectively ignore the first lens and draw the ray tracing for the second
lens. While this may cause some confusion, if we draw the diagram, we see that those
rays of light actually exist. We will consider a couple of examples in class, such as a
microscope.

The only serious difficulty with multiple lenses comes from the case of a virtual
object. This occurs when the image from the first lens doesn’t get a chance to form
before the rays of light hit the second lens. We will investigate this in class as a third
example. The complication is related to the ray diagram – we don’t know how the
rays of light behave. Mathematically, however, we find the distance the image would
have formed, had the second lens not been there, and find the distance from that
would-be image to the second lens, making do negative for that lens. The final image
location is then determined using the lens equation (with the focal length f2 and the
negative value of do2 ).
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