
Circular Motion and Universal
Gravitation

Uniform Circular Motion

Sections 5-1 to 5-2

An object travelling in a circle with a constant speed, v, is said to be experienc-
ing uniform circular motion. While the speed of the object is constant, the direction
and thus the velocity is constantly changing, so the object is accelerating. This accel-
eration is called the centripetal acceleration, as is determined by

~ac =
d~v
dt

(3.1)

where d~v
dt represents the derivative or change in velocity with respect to time. It is

essentially the slope of a velocity-time graph at any point in time.
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Figure 3.1: Velocity and displacement
triangles in centripetal acceleration

We can derive this geometrically, by looking at looking at the velocity at two
points in time, v and v′ as indicated in Figure 3.1. Since the speed is constant, v = v′.
Comparing the r-r-∆d triangle with the v-v′-∆v triangle, they are similar, so
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∆v
∆t

=

v∆d
r
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r

∆d
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=
v2

r
(3.2)

since ∆d
∆t = v. Note that the direction is the same as that of ∆v, which, as t → 0 is

directed inward, toward the center of the circle.

An object travelling at a constant speed in a circle travels the circumference
(C = 2πr) in the same amount of time for each circle. This time, T , is called the
period. An object that repeats its motion over and over again is said to experience pe-
riodic motion. The speed of the object travelling in the circle, then, can be determined
by

v =
d
t

So

v =
2πr
T

.
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We can substitute this value of v into equation 3.2 and get

ac =

(
2πr
T

)2

r

=

4π2r2

T 2

r

=
4π2r
T 2 (3.3)

Figure 3.2: Circular motion indicating
velocity and centripetal force

Newton’s second law tells us that if there is an acceleration, it is caused by
a force. This centripetal force (an inward pulling force) is given by

Fc =
mv2

r
(3.4)

or

Fc =
m4π2r

T 2 . (3.5)

During circular motion, at any given time, the velocity of the object is perpendic-
ular to the radius, and the centripetal force acts inward along the radius (see Figure
3.2). This is easily observed when swinging a weight attached to the end of a string
in a horizontal circle. If you were to cut the string (or if the string were to break),
the weight would fly off in its direction of motion at the time (perpendicular to the
string). What keeps the weight from travelling in a straight line? The string does, by
constantly providing an inward force. Note that the centripetal force is simply the net
force (Σ ~F) acting toward the center of a circle.

Non-Uniform Circular Motion

The case of an object which is speeding up (or slowing down) while it travels in
a circle is called non-uniform circular motion. In this case, we have the acceleration
caused by the circular motion (equations 3.2 and 3.3), but we also have tangential
acceleration (aT ). Tangential acceleration is calculated using your one-dimensional
equations of motion. To determine the total acceleration, we must add these two
accelerations as vectors.

Vertical Circles and Banked Turns

Sections 5-2 to 5-3

Vertical Circles

As opposed to horizontal circles, with vertical circles, we must contend with the
force of gravity. Consider the simple case of swinging a bucket full of water upside
down (which amazed you all as children when the water didn’t fall out). Look at the
free body diagrams at the bottom (Figure 3.3) and the top (Figure 3.4) of the circle.
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Figure 3.3: At the bottom, the tension in
the rope (handle or arm) holds the pail
up, while gravity pulls it down. In order
to make it swing upwards in a circle with
speed v, T must be larger than Fg by∑

F = T − Fg =
mv2
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Figure 3.4: At the top, however, the string is
(obviously) pulling downward, as is gravity.
In this case, T and Fg add to give the net

force, so
∑

F = T + Fg =
mv2

r
. As long

as v is sufficiently great for T > 0, the water
will stay in the pail. Otherwise you get wet.
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Notice that this changes if we are dealing with a rigid structure (like a Ferris
wheel) instead of a rope. The rigid structure can push upward, and so the wheel
doesn’t have to be travelling quickly in order to maintain balance at the top. (We will
investigate this example in class).

Banked Curves

Combining horizontal circles with inclines is slightly nasty, but not impossible.
Of course civil engineers deal with this all the time in road design. Very seldom do
you travel on a highway around a turn without it being banked somewhat. This is
simply because the increased normal force toward the center of the circle decreases
the amount of friction required to make the turn.

Assume a mass, m is travelling around a banked turn (radius r) with speed v (into
the page) and that this speed is fast enough that he would tend to slide up the hill, so
friction acts down the hill (see Figure 3.4).

Figure 3.5: Free body diagram of a mass
going around a banked turnThen we can see that

∑
Fy = 0 (since the car moves neither up nor down the hill)

and
∑

Fx =
mv2

r
to maintain a constant radius. Using these equations we get

FNy = F f y + Fg and
mv2

r
= FNx + F f x

The first equation allows us to calculate FN : FN =
mg

cos θ − µ sin θ
. Substituting this

into the second equations gives us the maximum velocity without slipping uphill:

mv2

r
= mg

(
sin θ+ µ cos θ
cos θ − µ sin θ

)
.

Not surprisingly, the masses cancel. Solving the equation for v gives

v =

√
gr

(
sin θ+ µ cos θ
cos θ − µ sin θ

)
.

Notice that in the trivial case of θ = 0, v =
√
µgr as we would expect on a flat

surface.
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Kepler’s Three Laws of Planetary Motion

Section 5-9

Introduction

Before the invention of the telescope, there were seven heavenly bodies moving
amongst the stars that were known to man: the sun, the moon, Mercury, Venus, Mars,
Jupiter and Saturn, which could all be seen with the naked eye.

Early planetary systems fell into two basic categories: the egocentric view, that the
earth is the center of the solar system (or universe) which was modeled by Ptolemy
among others; and the heliocentric view, that the sun is the center of the solar system,
modeled by Copernicus (b. 1473). Of course, we hold to the latter, but the reasons
for this are not obvious. It should be noted that there were ancient Greeks, such as
Heracleides and Aristarchus who thought that the earth rotated on its axis and that it
moved around the sun.

The seriousness of Copernicus’ model must be understood by its place in history.
In order to develop his model, he had to discard the entire picture of the universe as
it had been developed since Aristotle. If, in fact, the earth moves, it destroys many
of the ideas of motion which were understood. For example, imagine a bird on top
of a tree that sees a worm at the base. If it takes one second for the bird to reach the
ground, and the earth is moving (which it would have to do at a speed of about 30
km/s orbiting the sun), then the bird would have to travel 30 km to catch the worm!
But there were other arguments as well, such as, “If the earth is moving, what is
pushing it?”

A Danish astronomer, Tycho Brahe, (b. 1546) could not accept the Coperni-
can model, and set about developing a highly accurate map of the stars. With these
measurements, he purposed to find a more accurate description of the orbits of the
heavenly bodies. However, he was an old sot and drank himself to death (in 1601, in a
rather unusual and horrible manner, according to legend) before he could accomplish
this.

Kepler’s Laws of Planetary Motion

Brahe’s student, Johannes Kepler (b. 1571), was very mathematical, and un-
like Brahe, believed in the Copernican model. Comparing a mathematical model of
circular orbits to Brahe’s measurement, he found that they were close, but not close
enough. He then discovered that the planets moved around the sun, not in circular
orbits, but in elliptical ones.

Kepler, with this discovery, wrote down what we now refer to as Kepler’s laws of
planetary motion.

Kepler’s first law: The path of each planet about the sun is an ellipse with the sun
at one focus.

Figure 3.6: Kepler’s second law

“Kepler’s second law: Each planet moves so that an imaginary line drawn from the
sun to the planet sweeps out equal areas in equal periods of time.”1 As seen in figure

1 Giancoli, p. 115

3.6, the two areas are approximately equal, and occur in the same period of time. This
means that the orbiting body travels faster when it is closer to the body being orbited.

“Kepler’s third law: The ratio of the squares of the periods of any two planets
revolving about the sun is equal to the ratio of the cubes of their mean distances from
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the sun. That is, if T1 and T2 represent the periods, and r1 and r2 represent their
average distances from the sun, then" 2 2 ibid.(

T1

T2

)2
=

(
r1

r2

)3
, (3.6)

or for any objects revolving around the same body

K =
r3

T 2 (3.7)

where K is Kepler’s constant for a body. This means that for any planet orbiting the
sun, K is constant, but for a moon of Jupiter, the constant is different.

Newton’s Law of Universal Gravitation

Sections 5-6 to 5-8

According to legend, Newton was sitting under an apple tree in his orchard and
a falling apple caused him to ponder the force which pulled the apple to the ground.
Could the force of attraction between the apple and the ground be the same as the
force which held the planets in orbit around the sun? The rest, as they say, is history.

Newton, using Kepler’s work as a starting point, showed mathematically that if
Kepler’s 3rd law were true, then the size of the gravitational force must be inversely

proportional to the distance between the two planets, r, squared, or F ∝
1
r2 . Reason-

ing that the force required to accelerate a massive object in a circle must be greater
than that required to accelerate a less massive object, he also concluded that the size
of the gravitation force must proportional to the mass (since F = ma) of the planet
(m1). But similarly, it must also be proportional to the mass of the sun or planet being
orbited (m2). So, Newton proposed that the gravitational force between two objects is
equal to

F =
Gm1m2

r2 , (3.8)

where G is a universal gravitational constant. This is known as Newton’s Universal
Law of Gravitation.

At the time, this was useful only for comparison purposes. The mass of the earth
and the sun were unknown, as was G. It took about 100 years before the gravitational
constant was calculated. It was done in 1798 by Henry Cavendish. He took a rod,
having a lead ball on each end, suspended from a thin wire and by measuring the
amount the rod twisted when the lead balls came close to other balls, he was able to
determine the gravitational force of attraction. Since Cavendish knew the size of the
force, the distance and the two masses, he could easily solve for G.

The modern value for G, when the masses are measured in kilograms, the distance
in meters, and the force in Newtons is

G = 6.67 × 10−11 Nm2

kg2 .

By assuming circular orbits for the planets (which they nearly are), we can equate
the gravitational force with the centripetal force, since it is the gravitational force
which causes the planets to go in their circular orbits. This gives us

G
m1m2

r2 = m1
4π2r
T 2 (3.9)
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where r is the radius of orbit, T is the period of orbit, m1 is the mass of the orbiting
planet and m2 is the mass of the body being orbited. By cancelling m1 and rearrang-
ing for T 2, we get

T 2 =

(
4π2

Gm2

)
r3

or
r3

T 2 =
Gm2

4π2 = K. (3.10)

So the Kepler constant depends upon the mass of the object being orbited. And
knowing G enables us to determine the mass of the sun (or any orbited planet).

Weighing Earth

Knowing the gravitational constant, the acceleration of gravity on the surface of
the earth and the radius of the earth, it is possible to determine the mass of the earth.
We can equate the force of gravity on earth with the universal equation and we obtain

mg =
GmME

rE

2

where m is the mass of an object on the planet, ME is the mass of the earth and rE

is the radius of the earth (we take the distance between the centers rather than the
distance between the surfaces). Solving for the mass of the earth we get

ME =
grE

2

G
. (3.11)

When we substitute values and calculate, we determine that the mass of Earth is
5.98 × 1024kg

By using values of moons for different planets, we can equate centripetal accel-
eration to acceleration of gravity and use the radius of orbit of the moon around the
planet, we can use equation 3.11 to determine the mass of any planet with a satellite
by

Mp =
agr2

G
. (3.12)

Gravitational Potential Energy and Escape Velocity

Last year we treated potential energy due to gravity as PE = mgh (which
comes from the work required to lift an object to height h). This, however, assumes a
constant gravitational field, g.

Potential energy due to gravity becomes much more complicated when the gravita-
tional field is not uniform. This happens, of course, as we get further and further from
a planet. We know that the acceleration of gravity is equal to

ag =
GM
r2

where M is the mass of the planet from Newton’s law of gravitation. If r changes
significantly (about a hundred km or more for earth), then we cannot consider the
gravitational field to be constant, so we cannot use equation PE = mgh. Instead, this
becomes a calculus problem.
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The first problem is where to choose for our zero point. Surprisingly, we know
at an infinite distance away from the planet, the acceleration is zero, and so r = ∞

is a good choice for a zero potential energy (it won’t fall anywhere from an infinite
distance away). From there, we determine the work required to get an object that far
away:

W = F‖d (3.13)

but F‖ is constantly changing. The only way to solve this is with integration(which
is basically adding the areas under the graph!):

W =

∫ ∞

r0

GMm
r2 dr (3.14)

r

F(r)

r0

F(r) = GMm
r2

Figure 3.7: Area under GMm
r2 from r0 to

r = ∞

We will discuss this in class as to what this actually means in layman’s terms, but
it is basically the area under the graph from some radius r0 to r = ∞ as illustrated in
Figure 3.7. If we determine the work required to lift an object this far, to overcome
gravity, we know the potential energy is equal to this. Solving the above equation
gives us the equation for potential energy relative to infinity:

PE(r) = −
GMm

r
(3.15)

Example

How much energy does it take to lift a 1000 kg satellite from earth’s surface to an
altitude of 500 km?

The amount of energy required is simply the change in potential energy of the
satellite. So,

∆PE = PE f − PEi

M = 5.98 × 1024 kg r f = 6.38 × 106 + 5.00 × 105 kg = 6.88 × 106 m
m = 1000 kg ri = 6.38 × 106 m

Giving

PE f = −
GMm

r f
= −

(
6.67 × 10−11 Nm2

kg2

) (
5.98 × 1024 kg

)
(1000 kg)

6.88 × 106m
= −5.797×1010 J

PEi = −
GMm

ri
= −

(
6.67 × 10−11 Nm2

kg2

) (
5.98 × 1024 kg

)
(1000 kg)

6.38 × 106 m
= −6.252×1010 J

So the energy required is
∆PE = −5.797 × 1010 J − −6.252 × 1010 J = 4.55 × 109 J

Escape Velocity

Escape velocity is the velocity required to ”escape” the field of attraction of some
object. This could be an electric field, a magnetic field, or in our case a gravitational
field. We are essentially trying to calculate the velocity which would, in absence of
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other forces, take us to r = ∞. At any point relative to the object, we have a potential
energy PE = −GMm

r . To reach r = ∞, we require a total energy of 0. Therefore the
KE required to achieve this is KE = GMm

r = 1
2 mv2. The velocity determined by this

is known as the escape velocity. In our case, vesc =
√

2GM
r .
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