## Series Circuits

1. Two resistors, $R_{1}$ and $R_{2}$ are in series with a 12 V battery. $R_{1}=10 \Omega$ and $R_{2}=14 \Omega$ Find $I_{1}, I_{2}, V_{1}$ and $V_{2}$. (0.50 A, 0.50 A, 5.0 V, 7.0 V)
2. Three resistors are in series with an ammeter and a battery. If $R_{1}, R_{2}$ and $R_{3}$ are $3 \Omega, 2 \Omega$, and $1 \Omega$ respectively and the ammeter is reading 7.5 A , find $I_{1}, V_{T}, V_{1}, V_{2}$, and $V_{3}$. (7.5 A, $45 \mathrm{~V}, 22.5 \mathrm{~V}, 15 \mathrm{~V}, 7.5 \mathrm{~V}$ )
3. A battery has a terminal voltage of 24 V , and is in series with $R_{1}=8 \Omega$, and $R_{2}$. If the current is 2 A , find $R_{2}, V_{1}, V_{2}$, and $I_{2}$.
(4 $\Omega, 16 \mathrm{~V}, 8.0 \mathrm{~V}, 2.0 \mathrm{~A}$ )
4. A battery is connected in series with two resistors of $10 \Omega$ and $20 \Omega$ respectively. If the current in the circuit is 2.0 A , find the potential difference across each resistor and the potential difference of the battery.
(2.0 V, 4.0 V, 6.0 V)
5. The load across a 12 V battery consists of a series combination of three resistances of $15 \Omega, 21 \Omega$, and $24 \Omega$.
a. What is the total resistance?
( $60 \Omega$ )
b. What is the circuit current?
c. What is the potential difference across each of the resistances? (3.0 V, 4.8 V, 4.2 V)
6. What resistances must be added to the following so that they may be properly used with a 6.6 V battery?
a. A $100 \Omega$ resistance using 5.0 mA .
(1220 $\Omega$ )
b. A lamp using 0.20 A at 4.8 V
c. A $15 \Omega$ resistance that requires 3.6 V
d. A $5.0 \Omega$ resistance using 0.80 A
e. A device that requires 3.0 A at 5.0 V
f. A $25 \Omega$ resistance using 5.0 V

## Parallel Circuits

1. A 6.0 V battery is combined in parallel with two resistors of $50 \Omega$ and $10 \Omega$ respectively. Find $I_{T}$ and the current through each resistor. (0.72 A, 0.12 A, 0.60 A)
2. A 40 volt battery is connected in parallel with three resistors: $R_{1}=50 \Omega, R_{2}=10 \Omega$, and $R_{3}=20 \Omega$. Find $I_{T}, V_{1}, V_{2}, V_{3}, I_{1}, I_{2}$, and $I_{3}$. (6.8 A, $40 \mathrm{~V}, 40 \mathrm{~V}, 40 \mathrm{~V}, 0.80 \mathrm{~A}$, 4.0 A, 2.0 A )
3. Find the resistance of
a. three $15 \Omega$ resistances in parallel;
b. eight $24 \Omega$ resistances in parallel;
c. and one thousand $47 \Omega$ resistances in parallel.
4. A $4.0 \Omega$ and a $6.0 \Omega$ resistance are connected in parallel across a 6.0 V battery.
a. What is the total current in the circuit?
b. What is the current in each of the two resistances?
(1.5 A, 1.0 A)
5. A battery and three resistances are in parallel: $R_{1}=100 \Omega, R_{2}=200 \Omega$, and $R_{3}=300 \Omega$. If $I_{T}=2.0 \mathrm{~A}$, find the current through each resistance and the terminal voltage of the battery.

$$
(1.09 A, 0.55 A, 0.36 A, 109 \mathrm{~V})
$$

6. In building a circuit, a $20 \Omega$ resistor is desired, but none of this magnitude are available, although one of $25 \Omega$ is. What resistance could be put in parallel with the $25 \Omega$ to give the desired value? Could you do this with only $25 \Omega$ resistors? How?
(100 $\Omega$ )
7. An outlet in a North American home typically supplies 120 V. If you were to use a device that required 200 W of power, what would the current be? When you plug more than one device into the same outlet (via extension cord, power bar, etc.) you are actually connecting these in parallel. If you were to plug six 200 W devices into the same outlet, what would the current in the circuit be then $\left(I_{T}\right)$ ? Using this, explain why a fuse may blow when you "overload" a circuit.
(1.67 A, 10 A)

## Combination Circuits

1. A load connected across a 12 V battery consists of the resistance $R_{1}=40 \Omega$ in series with the parallel combination of $R_{2}=30 \Omega$ and $R_{3}=60 \Omega$.
a. What is the current through $R_{1}$ ?
b. What is the potential drop across each resistor? (8.0 V, 4.0 V, 4.0 V)
c. What are the currents through $R_{2}$ and $R_{3}$ ?
(0.13 A, 0.067 A)
2. Resistors $R_{1}, R_{2}$, and $R_{3}$ have resistances of $15 \Omega, 9.0 \Omega$ and $8.0 \Omega$ respectively. $R_{1}$ and $R_{2}$ are in series and the combination is in parallel with $R_{3}$ to form the load across two 6.0 V batteries connected in parallel.
a. Determine the total current in the circuit.
b. What is the current in the R3 branch?
c. What is the potential difference across R2?
3. Two resistors, $R_{1}$ and $R_{2}$, are connected in parallel. This combination is in series with $R_{3}$, $R_{4}$, a battery and an ammeter. If $R_{2}=45 \Omega, R_{3}=10 \Omega, R_{4}=20 \Omega, V_{T}=24 V$, and the ammeter reads 0.50 A , find
a. the resistance $R_{1} ;(30 \Omega)$
b. the current through each resistor;
(0.30 A, 0.20 A, $0.50 A, 0.50 A$ )
c. the voltage drop across each resistor;
(9.0 V, 9.0 V, 5.0 V, 10 V )
d. the power dissipated in each resistor.
(2.7 W, 1.8 W, 2.5 W, 5.0 W)
4. Show how one may connect $100 \Omega$ resistances to get a total resistance within $5 \%$ of
a. $300 \Omega$
(3s)
g. $64 \Omega$ ([2p, $7 p]$ in series)
b. $50 \Omega$
(2p)
h. $75 \Omega$ ([2p, $4 p]$ in series)
c. $35 \Omega$
(3p)
i. $40 \Omega \quad(2 x 5 p)$
d. $80 \Omega$
(4 $x$ 5p)
j. $45 \Omega([5 p, 4 p]$ in series $)$
e. $250 \Omega$
(2s,2p)
k. $120 \Omega$ ([1,5p] in series)
f. $14 \Omega$
(7p)
There are many possible solutions
5. Three resistors of $4.0 \Omega, 5.0 \Omega$ and $20 \Omega$ are connected in parallel. Another resistor of $4.0 \Omega$ and a battery of 16 V are placed in series with the parallel group. What is the current in the $5.0 \Omega$ resistor? (1.1 A)
6. For the circuit shown to the right, find:
a. total resistance. (20 $\Omega$ )
b. total current. (5.0 A)
c. the current through each resistor and the voltage drop across each resistor (5.0 A, 1.0 A, $4.0 \mathrm{~A}, 3.2 \mathrm{~A}, 0.8 \mathrm{~A}, 20$ $\mathrm{V}, 80 \mathrm{~V}, 64 \mathrm{~V}, 16 \mathrm{~V}, 16 \mathrm{~V})$

7. In the circuit diagram to the right, find the value of the unknown resistor and find the voltage of the battery. ( $6 \Omega, 24 \mathrm{~V}$ )
8. In the circuit shown to the right find
a. current through each resistor.
b. voltage drop across each resistor.
c. power dissipated by each resistor.
a. $(0.19 A, 0.11 A, 0.21 A, 0.09 A)$
b. $(4.5 \mathrm{~V}, 4.5 \mathrm{~V}, 3.0 \mathrm{~V}, 3.0 \mathrm{~V})$
c. $(0.86 \mathrm{~W}, 0.50 \mathrm{~W}, 0.63 \mathrm{~W}, 0.27 \mathrm{~W})$

