Electrostatics

1. What force does a positive point charge of $2 \times 10^{-6} \mathrm{C}$ exert on a negative point charge of $-5 \times 10^{-6} \mathrm{C}$ when they are separated by a distance of 0.10 m ?
2. What force does a charge of $+10 \mu \mathrm{C}$ exert on a charge of $+40 \mu \mathrm{C}$ at a distance of
(a) 1.0 cm ?
$\left(3.6 \times 10^{4} \mathrm{~N}\right)$
(b) 2.0 cm ?
$\left(9.0 \times 10^{3} \mathrm{~N}\right)$
(c) 0.10 cm ?
$\left(3.6 \times 10^{6} \mathrm{~N}\right)$
3. How far must a charge of $10 \mu \mathrm{C}$ be from a charge of $5.0 \mu \mathrm{C}$ in order that they exert a force of 0.50 N on each other?
4. A pithball "A" carrying a charge of $-20 \mu \mathrm{C}$ is suspended 6.0 cm above another charged ball, " B " by the electrical force of repulsion exerted on it by B. Ball A weighs 0.50 N . What is the charge on ball B ? ($-1 \times$ $10^{-8} \mathrm{C}$)
5. Three point charges are placed along a metrestick. Each bears a charge of $2.00 \mu \mathrm{C}$. " A " is located at the zero mark, " B " at the 10 cm mark and " C " at the 20 cm mark.
(a) What is the force exerted by A and B on C ?
(b) What is the force exerted by A and C on B ?
(c) What is the force exerted by B and C on A ?
6. A pithball, " A ", of mass 0.10 g and a positive charge of $+0.10 \mu \mathrm{C}$ is placed on a frictionless insulating table 50 cm from a second pithball bearing a charge of $-0.20 \mu \mathrm{C}$. What will be A's acceleration?
7. An electron of charge $-1.6 \times 10^{-19} \mathrm{C}$ revolves around a proton of equal but positive charge. The mass of an electron is $9.1 \times 10^{-31} \mathrm{~kg}$ and the distance between the electron and the proton is $5.0 \times 10^{-11} \mathrm{~m}$. Find
(a) the electrical force acting on the electron assuming a circular orbit.
(b) the speed of the electron in m / s.
(c) the time it takes to go around once.
(d) the gravitational force between the electron and the proton. (The mass of a proton is $1.7 \times 10^{-27} \mathrm{~kg}$).
8. Equal charges of $+3.0 \times 10^{-6} \mathrm{C}$ are placed at the corners of a rectangle which is 6.0 cm by 4.0 cm . What is the resultant force exerted on a charge of $+1.0 \times 10^{-6} \mathrm{C}$ placed in the middle of the rectangle?
9. Equal charges of $+10 \mu \mathrm{C}$ charges are placed at the corners of a square with sides of size 10 cm . What is the net force on each of the four charges from the other three?
10. Three point charges are placed in a vacuum at the corners of a right angled triangle as shown below, $q_{1}=+2.0 \times 10^{-6} \mathrm{C}, q_{2}=+5.0 \times 10^{-6} \mathrm{C}$ and $q_{3}=-6.0 \times 10^{-6} \mathrm{C}$. Find the net force on q_{1}.

Electric Fields

1. What is the strength of an electric field caused by a $10 \mu \mathrm{C}$ point charge at a distance of
(a) 10 cm from the charge?
(b) 1.0 m ? $\left(9.0 \times 10^{4} \mathrm{~N} / \mathrm{C}\right)$
(c) 5 mm ? $\left(3.6 \times 10^{9} \mathrm{~N} / \mathrm{C}\right)$
2. Draw the electric field lines around
(a) a positive point charge.
(b) negative point charge.
(c) two positive point charges a distance d apart.
(d) two negative point charges a distance d apart.
(e) a positive and negative point charge a distance d apart.
3. A charge of $4.0 \mu \mathrm{C}$ placed in an electric field experiences a force of 0.08 N . What is the magnitude of the electric field intensity?
$\left(2 \times 10^{4} \mathrm{~N} / \mathrm{C}\right)$
4. Find the electric field at a point 20 cm north of a small sphere bearing a charge of
(a) $-2.0 \mu \mathrm{C}$
($4.5 \times 10^{5} \mathrm{~N} / \mathrm{C}$ South)
(b) $+0.4 \mu \mathrm{C}$
($9.0 \times 10^{4} \mathrm{~N} / \mathrm{C}$ North)
5. Charges of $+20 \mu \mathrm{C}$ and $-30 \mu \mathrm{C}$ are placed on identical spheres 40 cm apart.
(a) Find the force between the spheres.
(b) Find the electric field strength at a point 80 cm from the $+20 \mu \mathrm{C}$ charge, if the other sphere has been removed.
$\left(2.8 \times 10^{5} \mathrm{~N} / \mathrm{C}\right)$
(c) Find the total electric field 50 cm from the positive charge and 10 cm from the negative charge.
