Gravitational Potential Energy

1.	What is the gravitational potential energy of a satellite of mass 1000 kg at a radius of orbit Belative to the surface of the Earth?	of 2×10^7 m relative to infinity? (-1.99×10 ¹⁰ J, 4.26×10 ¹⁰ J)
2.	A satellite of mass 1500 kg is placed in orbit at a radius of $4r_E$ (r_E is Earth's radius).	
	(a) How much potential energy does the satellite gain if launched from Earth's surface?	(7.02×10 ¹⁰ J)
	(b) What kinetic energy does the satellite require to be in orbit at this height?	(1.17×10 ¹⁰ J)
	(c) What is the total energy required to put the satellite in this orbit?	(8.19×10 ¹⁰ J)
3.	What is the escape velocity of a rocket from the surface of the Earth?	(11.2 km/s)
4.	What velocity would the Earth have to obtain to escape the sun?	(42.2 km/s)

Gravitational Potential Energy

1.	What is the gravitational potential energy of a satellite of mass 1000 kg at a radius of orbit of Relative to the surface of the Earth?	of 2×10^7 m relative to infinity? (-1.99×10 ¹⁰ J, 4.26×10 ¹⁰ J)
2.	A satellite of mass 1500 kg is placed in orbit at a radius of $4r_E$ (r_E is Earth's radius).	
	(a) How much potential energy does the satellite gain if launched from Earth's surface?	(7.02×10 ¹⁰ J)
	(b) What kinetic energy does the satellite require to be in orbit at this height?	(1.17×10 ¹⁰ J)
	(c) What is the total energy required to put the satellite in this orbit?	(8.19×10 ¹⁰ J)
3.	What is the escape velocity of a rocket from the surface of the Earth?	(11.2 km/s)
4.	What velocity would the Earth have to obtain to escape the sun?	(42.2 km/s)

Gravitational Potential Energy

1.	What is the gravitational potential energy of a satellite of mass 1000 kg at a radius of orbit of Relative to the surface of the Earth?	of 2×10^7 m relative to infinity? (-1.99×10 ¹⁰ J, 4.26×10 ¹⁰ J)
2.	A satellite of mass 1500 kg is placed in orbit at a radius of $4r_E$ (r_E is Earth's radius). (a) How much potential energy does the satellite gain if launched from Earth's surface?	(7.02×10 ¹⁰ J)
	(b) What kinetic energy does the satellite require to be in orbit at this height?	(1.17×10 ¹⁰ J)
	(c) What is the total energy required to put the satellite in this orbit?	(8.19×10 ¹⁰ J)

- 3. What is the escape velocity of a rocket from the surface of the Earth? (11.2 km/s)
- 4. What velocity would the Earth have to obtain to escape the sun? (42.2 km/s)