Physics 112 - I Can Statements

Unit I - Kinematics

\qquad I can explain the difference between vectors and scalars and give examples.
$d^{\prime}-t$ graphs - I can ...
___ Read displacement and time from the graph.
\qquad Determine distance from the graph.
\qquad Determine instantaneous and average velocity, instantaneous and average speed from the graph
$\stackrel{\prime}{\prime}-t$ graphs - I can ...
\qquad Read instantaneous velocity and time from the graph.
\qquad Determine acceleration from the graph.
\qquad Determine distance and displacement from the graph.
\qquad Determine instantaneous and average speed from the graph.

Vector Addition - I can. . .

___ understand and use the tip-to-tail method of vector addition in 1 and 2 dimensions.
\qquad solve 1-dimensional vector addition problems.
\qquad give directions in two dimensions using bearings or compass directions (e.g. N20 ${ }^{\circ}$).
\qquad solve 2-dimensional vector addition problems including straight vector addition, and average velocity and speed.

Motion - Problem Solving - I can. . .

\qquad recite the kinematics equations
\qquad use kinematics equations to solve 1 dimensional motion problems.

Unit II - Dynamics

Friction - I can...

understand the terms normal force, force of friction, net force and coefficient of friction.
relate the normal force and force of friction to the coefficient of friction and use this relation to solve problems.
\qquad can determine the normal force and force of friction when pulling horizontally or at an angle at constant velocity.

Newtons' Laws - I can . . .

__ understand and state Newton's 3 laws of motion and apply them to physical situations.
\qquad draw free body diagrams illustrating the forces on objects.
\qquad break a force vector into perpendicular components.
take a word problem and set up the appropriate free body diagram(s) to represent the situation.
use $2^{\text {nd }}$ law and force diagrams to determine the net force and acceleration of an object, or use the acceleration to determine the net force.
find the acceleration of multiple objects connected together.
find the tension in a rope.
solve problems involving pulleys and understand that pulleys simply change the direction of the force.

