Physics 112 – I Can Statements

Unit I – Kinematics

____ I can explain the difference between vectors and scalars and give examples.

d - t graphs – I can . . .

- ____ Read displacement and time from the graph.
- ____ Determine distance from the graph.
- ____ Determine instantaneous and average velocity, instantaneous and average speed from the graph

v' - t graphs – I can . . .

- ____ Read instantaneous velocity and time from the graph.
- ____ Determine acceleration from the graph.
- ____ Determine distance and displacement from the graph.
- ____ Determine instantaneous and average speed from the graph.

Vector Addition – I can. . .

- _____ understand and use the tip-to-tail method of vector addition in 1 and 2 dimensions.
- _____ solve 1-dimensional vector addition problems.
- ____ give directions in two dimensions using bearings or compass directions (e.g. N20°E).
- _____ solve 2-dimensional vector addition problems including straight vector addition, and average velocity and speed.

Motion – Problem Solving – I can. . .

____ recite the kinematics equations

_____ use kinematics equations to solve 1 dimensional motion problems.

Unit II – Dynamics

Friction – I can . . .

- _____ understand the terms *normal force, force of friction, net force* and *coefficient of friction*.
- _____ relate the normal force and force of friction to the coefficient of friction and use this relation to solve problems.
- ____ can determine the normal force and force of friction when pulling horizontally or at an angle at constant velocity.

Newtons' Laws – I can . . .

- _____ understand and state Newton's 3 laws of motion and apply them to physical situations.
- ____ draw free body diagrams illustrating the forces on objects.
- ____ break a force vector into perpendicular components.
- _____ take a word problem and set up the appropriate free body diagram(s) to represent the situation.
- _____ use 2nd law and force diagrams to determine the net force and acceleration of an object, or use the acceleration to determine the net force.
- _____ find the acceleration of multiple objects connected together.
- _____ find the tension in a rope.
- _____ solve problems involving pulleys and understand that pulleys simply change the direction of the force.