1. Use the planet Uranus to calculate Kepler's constant for bodies that orbit the Sun. $\left(3.38 \times 10^{18} \mathrm{~m}^{3} / \mathrm{s}^{2}\right)$
2. What would be the period of a planet that orbits the Sun in an orbit of radius $3.20 \times 10^{14} \mathrm{~m}$? How many Earth years would this be?
$\left(3.11 \times 10^{12} \mathrm{~s}, 9.85 \times 10^{4} \mathrm{y}\right)$
3. Calculate the radius of orbit of a planet orbiting the Sun if it has a period of $1.13 \times 10^{5} \mathrm{~s}$. $\left(3.50 \times 10^{9} \mathrm{~m}\right)$
4. Calculate the speed of the planets mentioned in Problems 2 and 3.
$\left(646 \frac{\mathrm{~m}}{\mathrm{~s}}, 1.93 \times 10^{5} \frac{\mathrm{~m}}{\mathrm{~s}}\right)$
5. Tethys is one of the moons of the planet Saturn. Using this moon, calculate Kepler's constant for bodies that orbit Saturn.
$\left(9.56 \times 10^{14} \mathrm{~m}^{3} / \mathrm{s}^{2}\right)$
6. Using the constant determined in problem \#5, find the speed of a satellite that orbits Saturn at an altitude of 600 kilometres.
$\left(2.48 \times 10^{4} \frac{\mathrm{~m}}{\mathrm{~s}}\right)$
7. For a satellite which orbits Mars with a period of $1.70 \times 10^{5} \mathrm{~s}$ find
(a) the orbital radius.
$\left(3.14 \times 10^{7} \mathrm{~m}\right)$
(b) its centripetal acceleration.
$\left(4.29 \times 10^{-2} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)$
8. Calculate Kepler's constant for the planet Neptune by using the data for its moon, Nereid.

$$
\left(1.76 \times 10^{14} \mathrm{~m}^{3} / \mathrm{s}^{2}\right)
$$

9. A satellite orbits Mars in 3.00 hours. Find
(a) its orbital radius.
$\left(5.00 \times 10^{6} \mathrm{~m}\right)$
(b) its speed.
$\left(2.91 \times 10^{3} \frac{\mathrm{~m}}{\mathrm{~s}}\right)$
10. (a) Calculate the value for Kepler's constant for the moon in orbit around the Earth. $\left(1.00 \times 10^{13} \mathrm{~m}^{3} / \mathrm{s}^{2}\right)$
(b) A T.V. satellite is in orbit around the Earth at an altitude of 900 km . Find the period of this satellite in seconds.
$\left(6.21 \times 10^{3} \mathrm{~s}\right)$
11. How long will it take a satellite to orbit Earth if it is at an altitude of $4.0 \times 10^{4} \mathrm{~km}$?
$\left(9.99 \times 10^{4} \mathrm{~s}\right)$
12. A satellite around the Sun has an orbital radius of $1.3 \times 10^{11} \mathrm{~m}$. Find
(a) the satellite's period,
$\left(2.56 \times 10^{7} \mathrm{~s}\right)$
(b) the circumference of its orbit in metres,
$\left(8.16 \times 10^{11} \mathrm{~m}\right)$
(c) the average speed of the satellite.
$\left(3.19 \times 10^{4} \frac{\mathrm{~m}}{\mathrm{~s}}\right)$
13. The radius of the moon is $1.74 \times 10^{6} \mathrm{~m}$. During the 1972 Apollo 16 moon flight, the Command Module manoeuvred into a nearly circular orbit 100 km above the lunar surface. The period of this spacecraft was measured to be 2.0 hours. During one of its orbits the Command Ship launched a small satellite into a circular orbit 1900 km above the lunar surface.
(a) What was the period of this small satellite?
$\left(2.00 \times 10^{4} \mathrm{~s}\right)$
(b) What was the speed of the small satellite?
$\left(1.14 \times 10^{3} \frac{\mathrm{~m}}{\mathrm{~s}}\right)$
14. A telecommunications satellite is in geostationary orbit around Earth (a period of 24 h). Find
(a) the average radius of its orbit.
$\left(4.21 \times 10^{7} \mathrm{~m}\right)$
(b) its altitude above Earth's surface,
$\left(3.57 \times 10^{7} \mathrm{~m}\right)$
(c) its average orbital speed.
$\left(3.06 \times 10^{3} \frac{\mathrm{~m}}{\mathrm{~s}}\right)$
15. Calculate the speed with which Pluto orbits the Sun in km / h.
