Kepler's Laws

1.	Use the planet Uranus to calculate Kepler's constant for bodies that orbit the Sun.	$(3.38 imes 10^{18} \text{ m}^3/\text{s}^2)$
2.	What would be the period of a planet that orbits the Sun in an orbit of radius $3.20 \times$ Earth years would this be? (3.11	$\times 10^{14}$ m? How many $\times 10^{12}$ s, 9.85 $\times 10^{4}$ y)
3.	Calculate the radius of orbit of a planet orbiting the Sun if it has a period of 1.13×10	⁵ s. (3.50×10 ⁹ m)
4.	Calculate the speed of the planets mentioned in Problems 2 and 3.	$(646 \ \frac{m}{s}, \ 1.93 \times 10^5 \ \frac{m}{s})$
5.	Tethys is one of the moons of the planet Saturn. Using this moon, calculate Kepler that orbit Saturn.	is constant for bodies (9.56 \times $10^{14}~m^3/s^2)$
6.	Using the constant determined in problem # 5, find the speed of a satellite that orbits of 600 kilometres.	s Saturn at an altitude $(2.48 \times 10^4 \text{ m}{s})$
7.	For a satellite which orbits Mars with a period of $1.70\times 10^5~s$ find	
	(a) the orbital radius.	(3.14×10 ⁷ m)
	(b) its centripetal acceleration.	$(4.29 \times 10^{-2} \ \frac{m}{s^2})$
8.	Calculate Kepler's constant for the planet Neptune by using the data for its moon, Ne	reid. (1.76 $\times \ 10^{14} \ m^3/s^2)$
9.	A satellite orbits Mars in 3.00 hours. Find	
	(a) its orbital radius.	(5.00×10 ⁶ m)
	(b) its speed.	$(2.91 \times 10^3 \ \frac{m}{s})$
10.	(a) Calculate the value for Kepler's constant for the moon in orbit around the Earth.	$(1.00\times 10^{13}\ m^3/s^2)$
	(b) A T.V. satellite is in orbit around the Earth at an altitude of 900 km. Find the pe seconds.	riod of this satellite in $(6.21 \times 10^3 \text{ s})$
11.	How long will it take a satellite to orbit Earth if it is at an altitude of 4.0×10^4 km?	(9.99×10 ⁴ s)
12.	A satellite around the Sun has an orbital radius of 1.3×10^{11} m. Find	
	(a) the satellite's period,	(2.56×10 ⁷ s)
	(b) the circumference of its orbit in metres,	(8.16×10 ¹¹ m)
	(c) the average speed of the satellite.	$(3.19 \times 10^4 \ \frac{m}{s})$
13.	The radius of the moon is 1.74×10^6 m. During the 1972 Apollo 16 moon flight, the manoeuvred into a nearly circular orbit 100 km above the lunar surface. The period of measured to be 2.0 hours. During one of its orbits the Command Ship launched a circular orbit 1900 km above the lunar surface.	ne Command Module of this spacecraft was a small satellite into a

(a)	What was the period of this small satellite?	(2.00×10 ⁴ s)
(b)	What was the speed of the small satellite?	$(1.14 \times 10^3 \ \frac{m}{s})$

14. A telecommunications satellite is in geostationary orbit around Earth (a period of 24 h). Find

(a) the average radius of its orbit.	(4.21×10 ⁷ m)
(b) its altitude above Earth's surface,	(3.57×10 ⁷ m)
(c) its average orbital speed.	$(3.06 \times 10^3 \ \frac{m}{s})$
15. Calculate the speed with which Pluto orbits the Sun in km/h.	(1.83×10 ⁴ km/h)