Physics 112 - Momentum-Impulse

1. A train having 85 cars in all including the engine, each of which has a mass of $8.0 \times 10^{4} \mathrm{~kg}$, is moving down the track at $0.50 \mathrm{~m} / \mathrm{s}$.
(a) What is the momentum of the train?
$\left(3.4 \times 10^{6} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\right)$
(b) What impulse would have to be put on the train in order to stop it? $\left(-3.4 \times 10^{6} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\right)$
(c) What impulse was given to the train in the first place to get it up to speed?
$\left(3.4 \times 10^{6} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\right)$
2. How long must an unbalanced force of 500 N act on a 1500 kg car in order to increase its speed from $5.0 \mathrm{~m} / \mathrm{s}$ to $15 \mathrm{~m} / \mathrm{s}$?
(30 s)
3. A ball that weighs 2.3 N is moving at a velocity of $15 \mathrm{~m} / \mathrm{s}$ when it is hit by a bat causing it to move in the opposite direction at $30 \mathrm{~m} / \mathrm{s}$. Find the force exerted by the bat if the blow lasts for 0.01 seconds.
$\left(1.06 \times 10^{3} \mathrm{~N}\right)$
4. A car of mass 1400 kg crashes into a solid wall and is stopped in 0.50 seconds. If the car was travelling at a speed of $5.0 \mathrm{~m} / \mathrm{s}$ when it hit the wall,
(a) what is the force of the wall on the car?
$\left(-1.4 \times 10^{4} \mathrm{~N}\right)$
(b) what is the force of the car on the wall?
$\left(1.4 \times 10^{4} \mathrm{~N}\right)$
(c) what impulse did the car put on the wall?
$\left(7.0 \times 10^{3} \mathrm{~N}\right)$
5. A 150 gram baseball travelling at $30 \mathrm{~m} / \mathrm{s}$ is stopped by a catcher's mitt in 0.050 s . What force must the catcher exert while stopping the ball?
(-90 N)
6. If a bullet of mass 50 grams is moving at $400 \mathrm{~m} / \mathrm{s}$ when it encounters a retarding force of 3000 N, find
(a) the time required to stop the bullet and
$\left(6.7 \times 10^{-3} \mathrm{~s}\right)$
(b) the distance it will go in that time.
(1.3 m)
7. A small red cart of mass 2.0 kg is travelling west at $4.0 \mathrm{~m} / \mathrm{s}$ when it collides "head-on" with a blue cart of mass 5.0 kg travelling east at $3.0 \mathrm{~m} / \mathrm{s}$. If the carts remain stuck together after the collision, find:
(a) the common velocity after the collision
($1.0 \mathrm{~m} / \mathrm{s}$ East)
(b) the impulse on the red cart.
(10 N•s)
8. A 4000 kg truck travelling east at $8.0 \mathrm{~m} / \mathrm{s}$ hits a 2500 kg car that was travelling west at 6.0 m / s. If they lock bumpers, find the common velocity after the collision.
($2.6 \mathrm{~m} / \mathrm{s}$ East)
9. A 16 gram bullet is fired into a 484 gram block of wood resting on a large ice surface. If the bullet strikes the wood horizontally at $80 \mathrm{~m} / \mathrm{s}$ and remains in the wood after impact,
(a) what will the velocity of the wood be after impact?
($2.56 \mathrm{~m} / \mathrm{s}$)
(b) what impulse will the ice put on the block in getting it stopped?
(-1.28 N.s - to stop the block with the bullet in it)
10. A plastic ball having a mass of 250 grams and a velocity of $20.0 \mathrm{~cm} / \mathrm{s}$ east collides with another ball having a mass of 100 grams moving along the same line, also east, but at 10.0 cm / s. After the collision, the 250 g ball has a velocity of $15.0 \mathrm{~cm} / \mathrm{s}$ east.
(a) What is the velocity of the other ball?
($22.5 \mathrm{~cm} / \mathrm{s}$)
(b) What impulse does the 100 g ball put on the 250 g ball?
(1250 g.cm/s West)
(c) What impulse does the 250 g ball put on the 100 g ball?put on the 100 g ball? (1250 $\mathrm{g} \cdot \mathrm{cm} / \mathrm{s}$ East)
