Physics 112 - Momentum-Impulse

1.	A train having 85 cars in all including the engi moving down the track at 0.50 m/s.	ne, each of which has a ma	ss of 8.0 $ imes$ 10 ⁴ kg, is
	(a) What is the momentum of the train?		$(3.4 \times 10^{6} \text{ kg} \cdot \text{m/s})$
	(b) What impulse would have to be put on th	e train in order to stop it? ($(-3.4 \times 10^6 \text{ kg} \cdot \text{m/s})$
	(c) What impulse was given to the train in th	e first place to get it up to	speed? (3.4 × 10 ⁶ kg ⋅ m/s)
2.	How long must an unbalanced force of 500 I speed from 5.0 m/s to 15 m/s?	N act on a 1500 kg car in	order to increase its (30 s)
3.	A ball that weighs 2.3 N is moving at a velocit move in the opposite direction at 30 m/s. Fin for 0.01 seconds.	ty of 15 m/s when it is hit k d the force exerted by the	by a bat causing it to bat if the blow lasts $(1.06 \times 10^3 \text{ N})$
4.	A car of mass 1400 kg crashes into a solid wa travelling at a speed of 5.0 m/s when it hit the	ll and is stopped in 0.50 se e wall,	conds. If the car was
	(a) what is the force of the wall on the car?		$(-1.4 \times 10^4 \text{ N})$
	(b) what is the force of the car on the wall?		$(1.4 \times 10^4 \text{ N})$
	(c) what impulse did the car put on the wall?		$(7.0 \times 10^3 \text{ N})$
5.	A 150 gram baseball travelling at 30 m/s is stopped by a catcher's mitt in 0.050 s. What force must the catcher exert while stopping the ball? (-90 N)		
6.	If a bullet of mass 50 grams is moving at 400 m/s when it encounters a retarding force 3000 N , find		
	(a) the time required to stop the bullet and		$(6.7 \times 10^{-3} \text{ s})$
	(b) the distance it will go in that time.		(1.3 m)
7.	. A small red cart of mass 2.0 kg is travelling west at 4.0 m/s when it collides "head-or a blue cart of mass 5.0 kg travelling east at 3.0 m/s. If the carts remain stuck together the collision, find:		
	(a) the common velocity after the collision		(1.0 m/s East)
	(b) the impulse on the red cart.		(10 N·s)
8.	A 4000 kg truck travelling east at 8.0 m/s hit m/s. If they lock bumpers, find the common v	s a 2500 kg car that was t elocity after the collision.	ravelling west at 6.0 (2.6 m/s East)
9.	A 16 gram bullet is fired into a 484 gram block of wood resting on a large ice surface. If bullet strikes the wood horizontally at 80 m/s and remains in the wood after impact,		ge ice surface. If the fter impact,
	(a) what will the velocity of the wood be afte	r impact?	(2.56 m/s)
	(b) what impulse will the ice put on the block (-	in getting it stopped? 1.28 N·s - to stop the block	<i>with</i> the bullet in it)
10.	A plastic ball having a mass of 250 grams another ball having a mass of 100 grams more cm/s. After the collision, the 250 g ball has a second	and a velocity of 20.0 cm ving along the same line, a velocity of 15.0 cm/s east.	/s east collides with Iso east, but at 10.0
	(a) What is the velocity of the other ball?		(22.5 cm/s)
	(b) What impulse does the 100 g ball put on	the 250 g ball?	(1250 g·cm/s West)

(c) What impulse does the 250 g ball put on the 100 g ball?
put on the 100 g ball? (1250 g·cm/s East)