Universal Gravitation

1.	A satellite orbits around Earth at a distance of 1.28×10^7 m from the center of the Earth. The on the surface of Earth. For the satellite in orbit calculate its	ne satellite weighs 6000 N	
	(a) mass.	(612 kg)	
	(b) weight.	(1.49×10 ³ N)	
	(c) speed.	$(5.58 \times 10^3 \frac{m}{s})$	
2.	A satellite which weighs 1.0×10^4 N on the surface of Earth is put into circular orbit 7.05×10^8 m above the Earths surface. Calculate its		
	(a) mass	(1.0×10 ³ kg)	
	(b) weight	(0.79 N)	
	(c) velocity	$(7.5 \times 10^2 \ \frac{m}{s})$	
	(d) acceleration towards the Earth.	$(7.9 \times 10^{-4} \frac{m}{s^2})$	
3.	A satellite orbits Neptune in 200 minutes. The radius of its orbit is 2.92×10^7 . Calculate	-	
	(a) the average speed of the satellite.	$(1.53 \times 10^4 \ \frac{m}{s})$	
	(b) its centripetal acceleration.	$(8.01 \ \frac{m}{s^2})$	
4.	What orbital speed must a satellite of mass 800 kg have in order to maintain an orbit 2.00×1 Jupiter where the gravitational field strength is 15 $\frac{m}{c^2}$? What would it weigh at this height?	0^7 m above the surface of $(3.7 \times 10^4 \text{ m}/\text{s}, 1.2 \times 10^4 \text{ N})$	
5.	Compute the gravitational force between a proton and an electron using the following data: mass of proton = 1.67×10^{-27} kg mass of electron = 9.11×10^{-31} kg	-	
	radius of orbit of an electron = 5.29×10^{-9} cm.	(3.63×10 ⁻⁴⁷ N)	
6.	A space explorer is 1 billion km away from a certain star and she observes that the gravitation and the star is 1000 N. What will this force be when she is half a billion km from the star?	a certain star and she observes that the gravitational force between herself when she is half a billion km from the star?	
_		(4000 N)	
7.	satellite circles the Earth once every 95 minutes at an average altitude of 500 km. Calculate the mass of the Earth. 9×10^{24} kg)		
8.	A satellite put into circular orbit around Uranus weighs 2.0×10^4 N on Earth. The radius of the satellites orbit is 4.0×10^7 m (DO NOT use the mass of Uranus in your calculations). Calculate		
	(a) the period of the satellite.	(2.1×10 ⁴ s)	
	(b) its orbital velocity.	$(1.2 \times 10^4 \frac{m}{s})$	
	(c) the force needed to maintain this orbit.	(7.2×10 ³ N)	
	(d) the centripetal acceleration	$(3.6 \frac{m}{s^2})$	
	(e) the mass of Uranus.	(8.6×10 ²⁵ kg)	
9.	A satellite which weighs 7.0×10^3 N on Earth is put into orbit 200 km above the surface of Mar (a) mass.	rs. For the satellite find the $(7.1 \times 10^2 \text{ kg})$	
	(b) weight in orbit.	(2.3×10 ³ N)	
	(c) gravitational field strength acting on it.	$(3.2 \frac{m}{s^2})$	
	(d) speed of the satellite.	$(3.4 \times 10^3 \text{ m}{\text{s}})$	
10.	The lite with a mass of 640 kg is in orbit above the surface of the Earth where the gravitational field strength is 8.6 $\frac{n}{s^2}$. t is the gravitational force on the satellite at this height? (5.5×10 ³ N)		
11.	A 1000 kg satellite is put into a circular orbit above Earth so that it always remains over the same place on Earth. (This is called a synchronous or geostationary orbit.)		
	(a) What is the radius of this orbit?	(4.22×10 ⁷ m)	
	(b) What would the satellite weigh in orbit?	(224 N)	
	(c) How fast does it go while orbiting?	$(3.07 \times 10^3 \frac{m}{s})$	