Universal Gravitation

1. A satellite orbits around Earth at a distance of $1.28 \times 10^{7} \mathrm{~m}$ from the center of the Earth. The satellite weighs 6000 N on the surface of Earth. For the satellite in orbit calculate its
(a) mass.
(612 kg)
(b) weight
$\left(1.49 \times 10^{3} \mathrm{~N}\right)$
(c) speed.
$\left(5.58 \times 10^{3} \quad \frac{\mathrm{~m}}{\mathrm{~s}}\right)$
2. A satellite which weighs $1.0 \times 10^{4} \mathrm{~N}$ on the surface of Earth is put into circular orbit $7.05 \times 10^{8} \mathrm{~m}$ above the Earths surface. Calculate its
(a) mass

$$
\begin{array}{r}
\left(1.0 \times 10^{3} \mathrm{~kg}\right) \tag{0.79N}\\
(0.79 \mathrm{~N}) \\
\left(7.5 \times 10^{2} \frac{\mathrm{~m}}{\mathrm{~s}}\right) \\
\left(7.9 \times 10^{-4} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)
\end{array}
$$

(b) weight
(c) velocity
(d) acceleration towards the Earth.
3. A satellite orbits Neptune in 200 minutes. The radius of its orbit is 2.92×10^{7}. Calculate
(a) the average speed of the satellite.
(b) its centripetal acceleration.
$\left(8.01 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right.$)
4. What orbital speed must a satellite of mass 800 kg have in order to maintain an orbit $2.00 \times 10^{7} \mathrm{~m}$ above the surface of Jupiter where the gravitational field strength is $15 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$? What would it weigh at this height? $\quad\left(3.7 \times 10^{4} \frac{\mathrm{~m}}{\mathrm{~s}}, 1.2 \times 10^{4} \mathrm{~N}\right)$
5. Compute the gravitational force between a proton and an electron using the following data:
mass of proton $=1.67 \times 10^{-27} \mathrm{~kg}$
mass of electron $=9.11 \times 10^{-31} \mathrm{~kg}$
radius of orbit of an electron $=5.29 \times 10^{-9} \mathrm{~cm}$.
($3.63 \times 10^{-47} \mathrm{~N}$)
6. A space explorer is 1 billion km away from a certain star and she observes that the gravitational force between herself and the star is 1000 N . What will this force be when she is half a billion km from the star?
(4000 N)
7. A satellite circles the Earth once every 95 minutes at an average altitude of 500 km . Calculate the mass of the Earth. $\left(5.9 \times 10^{24} \mathrm{~kg}\right)$
8. A satellite put into circular orbit around Uranus weighs $2.0 \times 10^{4} \mathrm{~N}$ on Earth. The radius of the satellites orbit is 4.0×10^{7} m (DO NOT use the mass of Uranus in your calculations). Calculate
(a) the period of the satellite.
(b) its orbital velocity.
(c) the force needed to maintain this orbit.
(d) the centripetal acceleration
(3.6 $\frac{\mathrm{m}}{\mathrm{s}^{2}}$)
(e) the mass of Uranus.
$\left(8.6 \times 10^{25} \mathrm{~kg}\right)$
9. A satellite which weighs $7.0 \times 10^{3} \mathrm{~N}$ on Earth is put into orbit 200 km above the surface of Mars. For the satellite find the
(a) mass.
(b) weight in orbit.
$\left(2.3 \times 10^{3} \mathrm{~N}\right)$
(c) gravitational field strength acting on it.
$\left(3.2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right.$)
(d) speed of the satellite.
$\left(3.4 \times 10^{3} \frac{\mathrm{~m}}{\mathrm{~s}}\right)$
10. A satellite with a mass of 640 kg is in orbit above the surface of the Earth where the gravitational field strength is $8.6 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. What is the gravitational force on the satellite at this height?
11. A 1000 kg satellite is put into a circular orbit above Earth so that it always remains over the same place on Earth. (This is called a synchronous or geostationary orbit.)
(a) What is the radius of this orbit?
(b) What would the satellite weigh in orbit?
(224 N)
(c) How fast does it go while orbiting?

